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Approximating the Coulomb self-energy of a charge distribution within a three-
dimensional domain and the mutual Coulomb energy of two charge distributions
often constitutes a computational bottleneck in the simulation of physical systems.
The present article reports on a recently developed computational technique aimed
at the numerical evaluation of the six-dimensional integrals arising from Coulomb
interactions. Techniques from integral geometry are used to show a reduction of
the domain from six-dimensional to two-dimensional. In the process analytic sin-
gularities due to Coulomb’s law are eliminated. Experimental results on the self-
energy of a charged cube show that the proposed method converges rapidly and is
competitive with methods proposed in the literature for similar integration prob-
lems. c© 1998 Academic Press

1. INTRODUCTION

1.1. The Problem

Suppose we are given a domainD⊆ R3 in 3-space and a volume charge density function
ρ defined inD; the electrostatic or Coulomb self-energy ofD using the Gaussian unit
system is given by the following six-dimensional integral:

ED = 1

2

∫
p1,p2∈D

ρ(p1)ρ(p2)

|p1− p2| dp1 dp2. (1)

If we are given two domains,D1 and D2, in 3-space, endowed respectively with volume
charge density functionsρ1 andρ2, the mutual Coulomb energy is given by the following
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six-dimensional integral:

ED1,D2 =
∫

p1∈D1

∫
p2∈D2

ρ1(p1)ρ2(p2)

|p1− p2| dp1 dp2. (2)

Integrals of this form are found often in physics and chemistry but rarely are closed-form
solutions known (however, a notable exception is reported in the next subsection). Numerical
evaluation of integrals (1) and (2) encounters two sources of inefficiency. First of all these
integrals are six-dimensional, thus requiring a large number of cubature points. As a rule
of thumb, the approximation achieved withn quadrature points in dimension 1, is reached
with n6 cubature points in dimension 6, when product quadrature rules are used. Second,
the integrand function has a singularity whenever the two pointsp1 andp2 coincide, which
happens in integral (1) and may happen in integral (2), as we do not rule out domains that
share boundary points. The presence of singularities induces slow convergence in standard
numerical integration methods.

In this paper we show that for a vast class of domains and density functions it is possible
to transform integrals (1) and (2) so that the kernel is regular and the dimension of the
integration domain is reduced to 2, thus making numerical integration an appealing option.
Before we say more about our results we comment on two application areas where such
results may be beneficial.

1.2. Applications

1.2.1. Molecular computations.The well-known electron–electron repulsion integral
(ERI) is

(φµφν |φλφσ )=
∫

p1,p2∈R3

φµ(p1)φν(p1)φλ(p2)φσ (p2)

|p1− p2| dp1 dp2, (3)

whereφµ, φν, φλ, andφσ are one-electron orbitals. Such integrals are found in manyab
initio theories and methods, Hartree–Fock theory and density-functional theory [1, 2], to
mention a couple of the most important ones. The ERI has the same mathematical structure
of the energy integral (2) when we consider as domainsD1 andD2 the whole space and we
interpretφµφν (resp.φλφσ ) as the function associated with the first (resp. second) domain.

One-electron basis functions are then usually expanded as a linear combination of prim-
itive basis functions. Gaussian type functions [3] have become one of the most popular
choices for the basis expansion of atomic orbitals since the pioneering work of Boys [4]
showing that the ERI, as well as other relevant integrals, have an analytic exact solution
for such a class of functions. These analytic solutions are usually obtained through the
evaluation of recursive schemes [5–7], or through the so-called Rys polynomial technique
[8–10].

Boerrigter, te Velde, and Bearends [11] note that a large number of Gaussian-type func-
tions might be needed to tightly approximate one-electron orbitals, thus making the rapid
growth of the number of integrals to be evaluated a particularly vexing problem. Other types
of basis functions (e.g., Slater-type orbitals, plane weaves, Bessel functions) may lead to
shorter expansions, but suffer from the difficulty of analytic or numerical integration. In
[11, 12] a cellular approach is used: the space is partitioned in Voronoi polyhedra, where



       

APPROXIMATION OF ELECTROSTATIC ENERGY 709

a Voronoi polyhedron is the portion of space closer to a nucleus than any other. Then each
polyhedron is split into an inner sphere centered on the atom center and a set of truncated
pyramids. Specialized numerical techniques are then used in these two types of domains.
Numerical results reported in [11] compare favorably with previously known techniques,
notably those based on Diophantine integration [13, 14]. Such a method is suitable for
computing particle-distribution interaction integrals, since special attention is paid to sin-
gularities at the nuclei; however, such a technique does not seem to address more general
(six-dimensional) integrals (1) and (2).

A second numerical technique is advocated by Becke [15] (see also [16–18]). In [16]
integral (3) is split into an external part, corresponding to integration indp2, and an internal
part, corresponding to integration indp1 for a fixedp2. The internal integral is the potential
of the charge distributionφµφν at the fixed pointp2. Such a potential is calculated by
considering the equivalent Poisson equation and a finite-difference solution approach. The
external integral is then attacked with a technique in [15]. Starting from Voronoi cells based
on atomic nuclei Becke defines suitable weighting functions that are continuous, close to
the unity within a Voronoi cell, and close to zero outside. Using these weight functions, an
arbitrary three-dimensional integral can be reduced to a sum of atom-centered integrals, for
which product quadrature rules in spherical coordinates are used.

Further refinements and tuning of the approaches in [11, 15] for three-dimensional in-
tegrals are investigated in [19]. The approach in [20, 21] to the evaluation of integrals of
potential theory has some high level similarity with that of Becke, although in a different
context.

1.2.2. Energy calculations for crystals.In several models of matter we can distinguish
a discrete component made of charged point particles and a continuous component made
of continuous distributions of charge (see, e.g., [22]). Thus formally we can split the total
electrostatic energy into the contribution of the point charges, the mutual energy due to the
interaction of point charges with the distribution of charge, and finally, the contribution of
the distribution of charge. The first contribution is expressed formally as a double summation
of the Coulomb energy over pairs of particles. Several techniques, ranging from fastn-body
methods to periodic boundary conditions (Madelung sums [23], Ewald summation [24]),
are available to speed up the computation. The second contribution involves a sum of three-
dimensional integrals. Numerical techniques for such integrals have been mentioned above
in the context of DFT calculations. In the special case of uniform distribution in a cube some
analytic solutions are also known [25, 26]. For the energy of distribution of charges, which
are represented by six-dimensional integrals of type (1) or (2), save the above-mentioned
references, there is a notable lack of specific techniques available.

In the study of crystal or quasicrystal lattices it is customary to associate each particle with
a convex polyhedron containing the particle. Besides Voronoi cells, space filling polyhedra
are also used [27, 28]. Moreover, we may want to associate a charge distribution to each
polyhedron (e.g., to maintain electroneutrality). Although a constant distribution of charge
is a reasonable first choice, more precise models might include nonconstant distributions
to fit known data (either experimental or obtained through auxiliary computations). Thus,
energy calculations for regular crystal lattices (not necessarily with cubic symmetry), or
even irregular lattices, do conceivably benefit from general techniques for computing six-
dimensional energy integrals over convex polyhedral domains with nonconstant densities
of charge.
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1.3. Main Results, Experiments, and Comparisons

The main contribution of this paper is a general efficient method to compute integrals (1)
and (2) when:

• The domainD (resp.D1 andD2) is a compact convex polyhedron.
• The densityρ (resp.ρ1 andρ2) is a polynomial function in Cartesian coordinates.

As we noted above convex polyhedral domains arise naturally in methods based on
Voronoi tassellations or on space-filling polyhedra. Although most popular basis functions
are not polynomial (usually exponential terms are present), piecewise polynomial functions
may be used to fit any given function in three-dimensional space.

The proposed method has been implemented and tested on approximating the self-energy
of a uniformly charged cube (a more detailed description is in Section 5). A reference value
is obtained by a high-order Gaussian integration of the formula in [26] for the potential of
a cube at a point. As a focus for comparison we concentrate on the following experimental
result: using 1000 Gaussian points our method attains an absolute error between 10−5 and
10−6, without exploiting the symmetries of the cube. If we exploit explicitly symmetries
of the cube for the same number of points the absolute error of our method is in the range
between 10−9 and 10−10.

In [11, p. 103] an accuracy of 10−3 using a number of points per polyhedron in the range
from 700 (for hydrogen) to 3000 (for uranium), and exploiting symmetries is reported. How-
ever, the integrals considered in [11] are three-dimensional while ours are six-dimensional
before the geometric transformation. Results in [12, pp. 95–96] on computing the overlap
integrals (three-dimensional) for a Slater-type function in a convex polyhedron show an
error in the range [10−6, 10−7] for a number of points from 2500 for small molecules with
many symmetries up to 264,000 for large molecules without symmetries.

In [15] precision in the range from 10−4 to 10−5 is reported using a grid of integration
points of size equal to or greater than 20× 50× 50= 50,000 for the integration of three-
dimensional2 functions whose analytic closed form is known.

Our preliminary experiments and comparisons with results in [11, 12, 15] indicate that
our method for six-dimensional integrals can attain performances comparable to those of
competing methods even when applied just to three-dimensional integrals.

1.4. Integral Geometry and Computational Geometry

Our result is obtained by applying to integrals (1) and (2) geometric transformations
already applied successfully to other problems ranging from radiosity (approximation of
form factors [29]), to calculation of electrostatic forces [30] and the boundary element
method (entries of the stiffness matrix for systems of conducting bodies [31, 32]).

The first step of the transformation involves transforming integrals (1) and (2) into inte-
grals over lines in 3-space. The second step consists in choosing a particular form of the
differential measure of lines in 3-space so that we can separate our integral into an external
integral over the set of directions and an internal integral which can be evaluated analyti-
cally. The new kernel is evaluated using methods from computational geometry. As a result
the initial six-dimensional integral is reduced to a two-dimensional one. Moreover, while
the original kernel in (1), (2), and (3) is singular, the new kernel is regular everywhere in the

2 Such integrals are expressed in spherical coordinates, thus with a linear and two angular parameters.
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domain of integration. Although the general scheme is the same as in the above-mentioned
results, the transformation depends critically on the exponent of the factor|p1 − p2|, thus
requiring in this paper a new derivation starting from first principles.

1.5. Organization of the Paper

The paper is organized as follows. In Section 2 we give the geometric transformation of
integrals (1) and (2) for any convex compact polyhedron endowed with auniformcharge
density. In Section 3 the result is extended to any distribution of charge polynomial in
Cartesian coordinates. In Section 4 we describe the overall algorithm. In Section 5 we
discuss the implementation, experiments, and numerical results.

2. GEOMETRIC TRANSFORMATION: UNIFORM CHARGE DENSITY

In this section we assume that the domainD of interest is a convex and compact bodyB
in three-dimensional space, endowed with auniformcharge densityρ. We assume the space
to be vacuous or filled with a homogeneous nonpolarizable medium, and we assume a fixed
coordinate system. The purpose of this section is to use tools from integral geometry and
differential calculus in order to rewrite Eqs. (1) and (2) in a form convenient for numerical
integration. We begin by considering the electrostatic potential generated by the bodyB at
a point p of the space:

VB(p)= ρ
∫

q∈B

1

|p− q| dq. (4)

The idea is to expressVB(p) as a weighted integral over the set of straight lines passing
through p. The weight of each lineL is given by the charges lying onL, and it can be
expressed in terms of the length of the intersection ofL with the bodyB.

2.1. Preliminaries

Let us introduce some notation, as well as recall some elements of differential calculus
and integral geometry (see, e.g., [33, 34]). The first step is to introduce the set of straight
lines in space and define a measure on it. We denote withL the set of straight lines in
three-dimensional space. Given a pointp,Lp is the set of linesL ∈L passing throughp.
We will useL for lines in eitherL orLp, but to make the expressions clearer we will denote
their differential measures of lines respectively withdL anddLp. A straight line can be
identified in a number of different ways, depending on the coordinates used. To determine
a line in L ∈Lp we only need to specify a directionu, so thatL ≡ L(u). For a generic
line L ∈L, for reasons that will become apparent soon, we specify a directionu and the
intersections betweenL and a planeSu orthogonal tou, so thatL ≡ L(s, u). Note that this
is just one particular parameterization of lines in the space.

Santaló [34] explains how to find a density for subsets ofL which is invariant under the
group of rigid motions; moreover, this density is unique up to a constant factor. The density
for straight lines in the space is simply

dL= ds du,

wheredu is the differential measure of directions andds is the surface element on a plane
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Su normal tou. This nice relation justifies our choice of (s, u) to determineL. Other
representation of lines produce more complicated expressions.

The directionu corresponds to a point on the surface of a unit sphere. However, it
will be convenient to identify antipodal points, so that we will really be working on a
hemisphere denoted with12Ä whose measure is thus 2π . If we express the directionu in
polar coordinates (θ, φ) then it holdsdu= sinθ dφ dθ . For the setLp we have simply
dLp= du. Intuitively, this differential element can be seen as a small cone with vertexp,
extending in both directions fromp, wheredu equals the solid angle atp. The measure of
the entire setLp is

∫
dLp= | 12Ä| =2π . The physical dimension ofdL is [length2], while

dLp is adimensional.
Now we relate these differential elements to the element of volumedq= dx dy dzat the

point q of a bodyB. In fact this will enable us to rewrite in a more geometric fashion the
classical potential formula. Fix a pointp, and letr = |p−q| be the distance betweenq and
p; then it holds that

dq= r 2 dr dLp. (5)

This can be obtained by using polar coordinates, writingx= r sinθ cosφ, y= r sinθ sinφ,
z= r cosφ, and applying the rules of exterior calculus. It is also easily seen geometrically
becausedq is approximated by a cylinder with baser 2 dLp and heightdr [33].

The other important relation that we need relates the (exterior) product of two differential
volumes to the differential of lines. LetL be the line passing through pointsp andq, and
let r1 (resp.r2) be the distance ofp (resp.q) from a fixed point of reference onL. The
following holds [34, p. 237]:

dp dq= |r1− r2|2 dL dr1 dr2. (6)

2.2. Electrostatic Potential at a Point

We are now ready to find a formula alternative to (4) for the potential field generated by
a convex bodyB with uniform charge density. The intuition behind the following theorem
is that we take a differential cone with vertexp and sum up the contributions of all the
charges lying in the cone. We find their total contribution to be(r 2

max− r 2
min) dLp. Next we

integrate over all the directionsL p. The effect due to a fixed differential charge is counted
exactly once, because there is only one lineL ∈Lp passing through it.

THEOREM1. For a line L∈Lp, let `= |L ∩ B| and m= |L ∩C|,where C is the convex
hull of B and p. Then the potential VB(p) generated by B at a point p external to B is

VB(p)= ρ
2

∫
L∩B 6=∅

`(2m− `) dLp, (7)

where the integral is over the setLp. If p is inside B, the potential at p is

VB(p)= ρ
2

∫
Lp

(
`2

1+ `2
2

)
dLp, (8)

where`1 and`2 are the lengths of the two segments in which p splits L∩ B.
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Proof. Let p be external toB, and fix a lineL throughp and intersectingB. Clearly
p /∈ L ∩ B. We denote withrmin andrmax the minimum and maximum distance ofp from
the points ofL ∩ B. Now the potential atp is given by the classical formula (4), which in
view of (5) becomes

VB(p)=
∫

q∈B

ρ

|p− q| dq = ρ
∫

L∈Lp

∫
q∈L∩B

r dr dL p,

wherer = |p − q|. For a fixed lineL intersectingB, we have
∫

r dr = (r 2
max− r 2

min)/2
becauser varies between valuesrmin andrmax. If L ∩ B=∅ then

∫
r dr = 0. Consequently

we can integrate on the domain{L ∈Lp : L ∩ B 6= ∅}, thus obtaining

VB(p)= ρ
2

∫
L∩B 6=∅

(
r 2

max− r 2
min

)
dLp.

Now the first part of the theorem follows by substituting`= rmax− rmin andm= rmax and
rearranging the formula. This concludes the proof of the first part of the theorem.

Whenp is inside the bodyB, the previous reasoning applies to both directions of a single
line L, wherermin= 0 andrmax= l1, l2, respectively. Moreover, all lines inLp intersectB.
This proves the second part of the theorem.

Formulas (7) and (8) have the important property of having a regular kernel, while in the
classical formulation (4) the kernel may diverge.

2.3. Self-Energy of a Body and Mutual Energy of Two Bodies

Now we apply the result above in order to find the potential energy of a body or system
of bodies. Intuitively, we will find that for a fixed differential elementdL (which can be
imagined as a “fat cone”) the contribution to the total potential energy given by the interaction
between charges inB∩ dL is ρ`3dL/6. We will obtain the total energy by integrating all
the differential contributions. The contribution of two fixed particular differential charges
is counted exactly once, since two points define a unique straight line in the space.

THEOREM 2. The potential self-energy EB of a convex body B with uniform charge
densityρ is given by

EB= ρ
2

6

∫
L∩B 6=∅

`3 dL, (9)

where L∈L is a straight line in the space and̀is the length of the intersection L∩ B.

Proof. Let us start from the classical expression (1) for the potential energy of a body
B, whereρ is constant and we use relation (6),

EB = ρ2

2

∫
p,q∈B

1

|p− q| dp dq

= ρ2

2

∫
p,q∈B
|p− q| dL dr1 dr2,

whereL is the line passing throughp andq, andr1, r2 are the distances ofp,q from a
fixed point onL. We can exchange the order of integration, integrating first over the linesL
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intersectingB and then over the pair of points laying onL. We obtain

EB= ρ
2

2

∫
L∩B 6=∅

(∫
p,q∈B∩L

|p− q| dp dq

)
dL.

It can be easily seen that the inner integral evaluates to`3/3, and the theorem follows.

The same result can be obtained starting from the well-known relationEB= (1/2)∫
ρ(p)VB(p) dp and applying formula (8) for the potential at a point.
The valueI3=

∫
`3 dL is a geometric invariant of the objectB, and the theorem we just

proved is the three-dimensional case of a general relation which can be found in [34]. Using a
formula from integral geometry [34, p. 231] we can obtain the boundI3 ≤ (3/2)V[B]A[B]
(whereV[] and A[] denote respectively the volume and the superficial area), and this
translates directly into a useful bound forEB.

THEOREM3. The potential energy EB1,B2 of two convex bodies B1, B2,each with uniform
charge densityρ1, ρ2, is given by

EB1,B2 =
ρ1ρ2

2

∫
L∈L12

`B1`B2

(
2t − `B1 − `B2

)
dL,

where`B1 = |L ∩ B1|, `B2 = |L ∩ B2|, t = |L ∩ C|,C is the convex hull of B1 and B2, and
L12 is the set of lines which intersect both B1 and B2.

Proof. We consider expression (2) and proceed like in the previous theorem. We obtain

EB1,B2 = ρ1ρ2

∫
L12

(∫
p∈B1∩L ,q∈B2∩L

|p− q| dp dq

)
dL.

By means of some calculus we obtain that the inner integral evaluates to(1/2)`B1`B2(2t −
`B1 − `B2) and the theorem follows.

3. GEOMETRIC TRANSFORMATION: NONUNIFORM

DISTRIBUTION OF CHARGES

In this subsection we will extend the theory presented in Section 2 to the case of arbitrary
distribution of charges. We will obtain formulas involving integrals over the set of straight
lines, where each line is assigned a “weight” which depends on the body under study.

Consider first the electrostatic potential at a pointp. For a generic distribution of charge
on B formula (4) becomes

VB(p)=
∫

q∈B

ρ(q)

|p− q| dq.

Proceeding like in the proof of Theorem 1 we can rewrite the last expression as

VB(p) =
∫

L∩B 6=∅

∫
q∈L∩B

ρ(q)r dr dL p

=
∫

L∩B 6=∅
wB,p(L) dLp,
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where we definedwB,p(L)=
∫

q∈L∩Bρ(q)r dr . The quantitywB,p(L) can be thought of as
the “weight” of line L and represents its contribution to the potential atp due toB. We
already saw thatwB,p(L) can be computed explicitly ifρ(q) is constant. In the general case,
we apply a change of coordinates as follows. Consider an orthogonal system of coordinates
(x′, y′, z′) which has the origin atp and the axisz′ parallel toL. We rewrite the density
function in this system of coordinatesρ(p)≡ σ(x′, y′, z′). Notice that the coordinatesx′

andy′ are the same for all the points onL, and we will write simplyσ(z′)≡ σ(x′, y′, z′).
The weight of lineL is thus

wB,p(L)=
∫

q∈L∩B
σ(r )r dr.

Denoting withσ̄ (x) an antiderivative ofσ(x), and with ¯̄σ(x) an antiderivative of ¯σ(x), it
is easily seen thatF(x)= σ̄ (x)x− ¯̄σ(x) is an antiderivative ofσ(x)x. Finally, let`1 and
`2≥ `1 be thez′ coordinates of the extreme points ofL ∩ ∂B. We obtain forwB,p(L) the
expressions

wB,p(L)=
{

F(`2)− F(`1), if p /∈ B;
F(`1)+ F(`2)− 2F(0), if p∈ B.

Consider now the self-energy of a bodyB, given by expression (1). In the same manner
as before we obtain

EB =
∫

L∩B 6=∅

∫
p,q∈L∩B

1

2
ρ(p)ρ(q)|p− q| dp dq dL

=
∫

L∩B 6=∅
wB(L) dL, (10)

where we defined

wB(L)=
∫

p,q∈L∩B

1

2
ρ(p)ρ(q)|p− q| dp dq.

We can apply the same linear transformation as above to expressρ(p) in a coordinate
system (x′, y′, z′), wherez′ is parallel toL (the origin can be fixed arbitrarily). We denote
the transformed function withσ(x′, y′, z)≡ σ(z′), and define ¯σ(x) and ¯̄σ(x) as before. Let
`1 and`2≥ `1 be thez′ coordinates of the extreme points ofL ∩ ∂B. Then the weight ofL
can be written as

wB(L) =
∫ `2

r1,r2= `1

1

2
σ(r1)σ (r2)|r1− r2| dr1 dr2

=
∫ `2

r1= `1

σ(r1)[ ¯̄σ(r1)− σ̄ (`1)(r1− `1)− ¯̄σ(`1)] dr1 (11)

= σ̄ (`2) ¯̄σ(`2)+ σ̄ (`1) ¯̄σ(`2)− ¯̄σ(`1)σ̄ (`2)− σ̄ (`1) ¯̄σ(`1)

− σ̄ (`1)σ̄ (`2)(`2− `1)−
∫ `2

`1

σ̄ (x)2 dx. (12)

It is an easy observation that for constantρ this formula giveswB(L)= ρ2(`2− `1)
3/6, as

we obtained in Theorem 2.
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The case of two interacting bodies is in all similar to the one-body case, the only difference
being in the integration limits forr1 in expression (11).

4. ALGORITHM FOR THE EVALUATION OF THE INTEGRALS

IN POLYHEDRAL DOMAINS

The formulas obtained so far for electrostatic quantities are not in a computable form
because of the presence of the differentialdL. In this subsection we will choose a particular
parameterization of lines that is suitable for computation. We will obtain two-dimensional
integrals with a smooth kernel. Moreover, we will explain how to compute this kernel exactly
by analytic integration when the bodies are polyhedral objects and the charge distribution
is polynomial in (x, y, z). To keep the discussion clear, we will focus our attention on the
computation ofEB, given by formula (9) or its generalization (10).

As we explained in Subsection 2.1, we choose to represent a lineL in 3-space as a pair
(s, u), whereu∈ 1

2Ä ands∈ Su. Denote withBu the projection of the bodyB onto the plane
Su. A line L ≡ (s, u) intersectsB iff s∈ Bu. So the energy ofB in expression (10) can be
written

EB=
∫

u∈ 1
2Ä

∫
s∈Bu

wB(s, u) ds du=
∫

1
2Ä

K (u) du, (13)

where

K (u)=
∫

s∈Bu

wB(s, u) ds. (14)

We integrate numerically over the set1
2Ä by approximating the integral with a weighted

sum of values of the kernelK (u) at selected points in the integration domain. The domain
1
2Ä is a suitable domain of integration because a number of results exist on generating
distributions of points on the sphere [35]. In particular we can map the sphere into a
rectangular domain using spherical coordinates (θ, φ); however, to simplify certain formulas
we choose corodinates (z, φ), wherez= cosθ , so that the differential element of directions
becomesdu= sinθ dθ dφ= dz dφ.

Next we show that the value ofK (u) for any fixed given value ofu can be computed
exactly via analytic (nonnumerical) integration.

We compute the value ofK (u) for polyhedral domains and polynomial distributions by
means of the following algorithm. The key observation is that the values`1 and`2 in the ex-
pression forwB(L) are piecewise linear and thatwB(L) is a piecewise-polynomial function.

1. Fix an orthogonal coordinate system (x′, y′, z′), where thez′ axis is parallel to the
direction u, and (x′, y′) span the planeSu; next, orthogonally project the edges of the
polyhedronB overSu.

2. Compute the transformedσ(x′, y′, z′)≡ ρ(x, y, z) by means of a change of variables;
if ρ is a polynomial in (x, y, z), then alsoσ is a polynomial in (x′, y′, z′); thus, it is possible
to compute symbolically ¯σ , ¯̄σ , and

∫
σ̄ 2.

3. Compute the partition of the plane induced by the projected edges; to this purpose a
variety of algorithms exist in computational geometry literature [36, 37]. The work required
at this step isO((n + k) logn), wheren is the number of edges andk is the number of
intersections between projected edges, using a method of Bentley and Ottman [38].
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4. The global integralK (u) can be obtained by summing the quantitiesK f (u)=∫
s∈ fwB(s, u) ds, where f ranges among all the faces of the planar decomposition.
5. For each facef in the planar decomposition, the quantities`1 and`2 in (12) are linear

functions ofx′, y′; so their analytic expression can be interpolated from their values at the
vertices of f .

6. Sincè 1, `2, andσ are polynomials, the functionwB(s, u) is also a polynomial, whose
expression can be computed analytically.

7. Apply Green’s theorem to compute the valueK f (u) using only the values ofwB at
the vertices of facef .

8. Finally, computeK (u)= ∑ f K f (u).

The values of̀1, `2 at the vertices of the planar decomposition can be computed by visiting
the graph representing the decomposition. The procedure described above applies whenB
is a polyhedron andρ is a polynomial; however, it applies also to any another function for
which easy algebraic manipulation is possible. Notice that these two conditions influence
two different aspects of the computation: ifB is not a polyhedron, but we can compute`1, `2

exactly, we can still computewB(L) and perform numerical integration over the directions
u; on the other hand, ifρ is not easily manipulable, we need numerical integration also to
obtain the valuewB(L).

5. RESULTS OF NUMERICAL EXPERIMENTS

In this section we discuss our implementation of the algorithm for the computation of the
electrostatic energy of a generic polyhedral object. Then we present numerical experiments,
for the case of a homogeneously charged cube and a homogeneously charged parallelepiped.
Overall, we tried six different integration methods for the evaluation of the integral (13)
and two different implementations of the computation of the kernel (14).

5.1. Setup of Numerical Experiments

We first implemented the algorithm that computesK (u) in C++ language. We used the
C++ class library LEDA (Library of Efficient Data types and Algorithms) [39], available on
the internet at the addresshttp://www.mpi-sb.mpg.de. This library contains a routine
that computes the planar decomposition induced by a set of segments, using the sweep-type
algorithm described in [38].

The numerical experiment consisted in computing expression (10) using different quadra-
ture schemes for integrating over the directions. We tried the following quadrature schemes:

1. Monte Carlo integration. For this scheme, there exist also theoretical results that relate
the behaviour of the error to the geometry of the body [40].

2. Quasi-Monte Carlo integration [41]; FORTRAN routines for generating Halton, Sobol,
and Faure quasi-random sequences of points were taken from theCollected Algorithms from
ACM [42]; this package is also available on the internet from a variety of sites (e.g., at the
URL http://www.math.hkbu.edu.hk/qmc). The experiments were done according to
the general framework described in [43];

3. Adaptive multidimensional Gaussian integration; we used routine D01FCF in the NAG
library, which is a collection of Fortran routines maintained by the Numerical Algorithms
Group [44].
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As we will see in the next subsection, the generic implementation, which relies exclusively
on standard pieces of software, does not fully exploit the advantages of the new method. In
order to obtain better results, we first of all implemented the calculation of the kernelK (u)
in C language, using algorithms written on purpose rather than general libraries. Although
not highly optimized, this code runs about 40% faster than the previous one.

Moreover, we used a specialized integration algorithm, which is extensively described in
[32, 31]. This algorithm adaptively decomposes the integration domain into subdomains over
which the functionK (u) is well behaved; then it performs a standard Gaussian quadrature
over each subdomain, summing all the results in the end.

The idea behind the algorithm is that the functionK (u) has continuous derivatives in
each region where the projection of the polyhedron overSu is combinatorically the same.
While u varies among all the directions, a combinatorial change happens whenever a vertex
is projected on the projection of an edge; this corresponds to a certain great circle in the
hemisphere of directions12Ä, whereK (u) may have discontinuous derivatives.

The algorithm tries all the pairs of vertices and edges (v, e) and identifies the great circle
which corresponds to the directionsu such thatv is projected ontoe in Su. The union of
these great circles decomposes the hemisphere1

2Ä into regions in which the projection of
the polyhedron is combinatorically the same. In each such regionK (u) is well behaved and
the Gaussian quadrature succeeds in obtaining a high convergence rate.

The algorithm with the new integration method (which decomposes the domain and then
applies Gaussian integration) and the C code for the kernelK (u)will be denoted with DGQ
(decomposing Gaussian quadrature). Note that, denoting withN the number of evaluations
of K (u), the relationN ↔ time depends on the code used forK (u), while the relationN ↔
accuracy depends on the integration method.

5.2. Numerical Results

We performed numerical experiments on the computation of the energy of a cube with
unit side length, uniformly charged with densityρ= 1. Hummer [26] gives an analytic
formula for computing the potential of the cube at any point. Integrating this formula over
[0, 1]3 with NAG we were able to obtain a very precise reference value for the energy of a
unit cube,

E ≈ 0.94115632219486 erg, (15)

with an estimated error of the order of 10−14. (See Table III to examine the convergence of
this integration.)

For each of the standard rules of integration discussed in the previous subsection, we
carried out 36 different computations, varying the initial rotation of the cube and the seed
for the pseudo-random numbers used in the Monte Carlo algorithm. We then computed for
each numberN of function evaluations the root mean square error, i.e. ¯εN = (

∑
j ε

2
j,N/N)1/2,

whereε j,N is the absolute error of thej th run afterN function evaluations. Note that, being
the value of the integral close to 1, the valuesε j,N represent quite well also the relative
error.

The results for the Monte Carlo, quasi Monte Carlo, and NAG integration are shown
in Table I. The results obtained with the DGQ method are in Table II. There we show
for exponentially increasing values ofN the value−log10 ε̄N . This number represents the
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TABLE I

Energy of Uniformly Charged Cube, Standard Methods

N Time Monte Carlo Halton Faure Sobol’ NAG

150 0.82 2.60 2.89 3.03 2.95 2.70
200 1.09 2.72 3.00 3.29 3.09 2.85
300 1.63 2.76 3.27 3.26 3.12 2.92
450 2.43 2.85 3.48 3.54 3.56 3.05
550 2.98 2.91 3.61 3.61 3.59 3.27
750 3.79 2.99 3.60 3.76 3.59 3.42

1050 5.68 3.05 3.87 4.06 3.90 3.62
1450 7.86 3.14 4.14 3.96 3.97 3.67
2050 11.1 3.19 4.06 4.25 4.30 3.76
2950 15.9 3.25 4.25 4.29 4.26 3.84
4100 22.2 3.37 4.26 4.42 4.54 3.86
5800 31.4 3.39 4.48 4.40 4.47 4.58
8200 44.4 3.48 4.69 4.64 4.82 5.04

11600 62.7 3.60 4.76 4.83 4.73 5.35
16400 88.7 3.63 5.09 5.04 5.05 5.61
23200 125 3.70 4.86 5.01 5.08 5.65
32800 177 3.76 5.44 5.40 5.30 6.16

α= 0.53 α= 1.02 α= 1.00 α= 1.03 α= 1.69

accuracy of the result, in decimal digits, afterN evaluations ofK (u). The same results are
shown graphically in Fig. 1, in bilogarithmic scale.

All the computations were done on a Pentium II 200MHz computer. In the tables we also
show the time in seconds needed for one run to achieveN evaluations ofK (u). The value
α at the bottom of each column is the convergence rate of the method. It was obtained by a
least-square fitting of the values ¯εN , looking for a behaviour likecN−α.

In [40] it is shown that the variance ofK (u), in the uniform distribution case, is bounded,
so we can expect a convergence rate of 1/2 from the Monte Carlo method. From the results, it
is clear that Monte Carlo method performs exactly as expected. Quasi Monte Carlo methods
are superior and have a convergence rate very close to the one predicted by theory (error
decreases as log2 N/N for two-dimensional integration). The different sequences give a
very similar behaviour both in error and convergence rate.

TABLE II

Energy of Uniformly Charged Cube, DGQ Method

N Time DGQ

256 1.0 3.4
576 2.3 4.4

1024 4.0 5.7
1600 6.3 7.1
2304 9.1 8.6
3136 12 10.0
4096 16 11.0
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FIG. 1. Energy of the uniformly charged cube.

The results of Monte Carlo methods can be compared to those in Morokoff and Caflisch’s
work [43]. For a function continuous but not differentiable, defined on a sphere in dimen-
sion 2, they exhibit convergence rates between 0.5 (M.C.) and 1.00 (Q.M.C.), with an
accuracy of 1.6 digit (M.C.) and 2.85–3.22 digits (Q.M.C.) whenN= 32768.

The behaviour of the NAG routine is better than that of Monte Carlo method, but the
presence of discontinuities inK (u) is a great obstacle in achieving a high convergence
rate. Instead, the DGQ method, which prevents discontinuities by subdividing the domain,
achieves an error of 10−11 in only 16 s. We stress that this method is general and does not
use any property of the cube, so we expect a similar behaviour for any object not stretched
in one direction.

5.3. Exploiting Symmetries

In the integration above we did not take into account the symmetry of the cube when
integrating over the directionsu. However, in real applications, exploiting the symmetry
of the objects involved can save a lot of computations. If we do exploit the symmetry
of the cube, we can restrict integration to only 1/24 of the set12Ä (for example, in the
setφ ∈ [0, π/4], z∈ [(2+ tan2 φ)−1/2, 1]). In this way we limit the integration in a region
where K (u) is well behaved, and we do not waste computations for points which give
the same value. Although in a similar way, we exploit symmetry better than the DGQ
method does, automatically. Note, however, that in this setting the DGQ method is not
applicable.

We carried out numerical experiments in this setting, using the standard integration
techniques and the C++ code forK (u). The Monte Carlo method was run with 36 different
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TABLE III

Energy of Cube, Exploiting Symmetries

N Monte Carlo Halton Faure Sobol’ NAG
∫

Hummer

150 2.55 3.37 3.37 3.44 6.57 9.56
200 2.62 3.52 3.34 3.50 6.54 9.21
300 2.73 3.81 3.61 3.61 7.87 9.29
400 2.75 3.82 3.85 3.83 7.73 10.03
550 2.87 3.97 3.81 3.98 9.29 10.11
750 2.98 3.97 3.91 3.94 9.63 10.21

1050 3.03 4.10 3.98 4.31 9.75 11.38
1450 3.04 4.29 4.21 4.43 10.15 11.05
2050 3.10 4.67 4.37 4.55 11.03 11.32
2900 3.13 4.67 4.64 4.55 12.34 12.02
4100 3.24 4.95 4.69 4.89 13.65 12.15
5800 3.35 4.97 4.93 4.92 13.03
8200 3.40 5.08 4.94 5.22 13.07

11600 3.49 5.29 5.16 5.19 13.36
16400 3.56 5.22 5.64 5.43 13.84
23200 3.64 5.58 5.58 5.45 14.42
32800 3.78 5.70 5.64 5.62

α= 0.56 α= 1.04 α= 1.05 α= 0.98 α= 4.03

seeds for the generator; for QMC methods we used, in each run, the successive 105 points
in the sequence; the NAG routine was run only once, being a completely deterministic
algorithm.

The results are shown in Table III. The times of computation are the same as in Table I,
although if we use the C code forK (u) we could expect a 40% saving. As a reference,
the last column shows the accuracy obtained in the same time of computation when we
computed the reference value (15) by 3D adaptive integration of the analytic formula by
Hummer.

The analysis shows that the adaptive integrator exploits the new setting, achieving a very
high accuracy. An error below 10−13 is the minimum attained, approximately in 16 s if
we use the C code and even faster than we obtained the reference value. All three QMC
algorithms perform slightly better, in terms of digits of accuracy, but the convergence rates
are approximately the same. The Monte Carlo method does not seem to gain from the use
of symmetry.

5.4. Another Example: A Parallelepiped

One can notice that for the cube the integrand functionK (u) is very well behaved, in
the sense that it does not vary much. In fact, it holds 0.8≤ 6K (u)≤ 1 for every directionu.
This is not the case for general polyhedra, especially if they are stretched in one direction.

In order to better examine this case, we repeated the same numerical experiments taking
a 10× 1× 1 parallelepiped (with uniform charge densityρ= 1). By adapting the formula
in [26] we obtained a reference value of 28.52126794 erg for its energy. Notice that in this
case the quotient between the maximum ad the minimum value ofK (u) is 100. Table IV,
Table V, and Fig. 2 show the results, obtained as before by averaging over 36 different runs
of the algorithm. The errors shown are the relative errors.
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TABLE IV

Energy of Parallelepiped, Standard Methods

N Monte Carlo Halton Faure Sobol’ NAG

150 0.77 1.27 1.07 1.14 1.08
200 0.80 1.31 1.27 1.30 1.44
300 0.80 1.39 1.36 1.45 1.63
450 0.92 1.64 1.61 1.61 1.97
550 0.95 1.56 1.64 1.88 2.22
750 1.10 1.87 1.81 1.83 2.87

1050 1.22 1.95 1.95 2.03 3.07
1450 1.23 2.08 2.09 1.99 3.17
2050 1.32 2.20 2.59 2.65 3.20
2950 1.35 2.50 2.38 2.40 3.55
4100 1.43 2.49 2.47 2.71 3.71
5800 1.48 2.61 2.60 2.77 3.80
8200 1.57 2.83 3.01 3.03 3.82

11600 1.65 3.04 2.76 2.89 3.82
16400 1.76 3.18 3.18 3.17 3.82
23200 1.85 3.20 3.10 3.24 5.49
32800 1.93 3.60 3.51 3.63 6.18

α= 0.51 α= 0.94 α= 0.93 α= 0.95 α= 2.04

One can see that, as expected, the accuracy is worse than in the case of the cube, even if
the asymptotic convergence rates are very similar. Moreover, Monte Carlo and quasi Monte
Carlo methods seem more sensitive to the variation ofK (u) than the adaptive integrator. In
any case, the DGQ method is much faster than all the others.

Notice that in real applications objects stretched as our parallelepiped are rarely present, so
one should expect a behaviour somewhere in between the cube and the parallelepiped case.

TABLE V

Energy of Parallelepiped, DGQ Method

N Time DGQ

256 1.0 2.00
576 2.3 3.08

1024 4.0 3.63
1600 6.3 3.72
2304 9.1 4.03
3136 12 4.41
4096 16 4.82
5184 20 5.23
6400 25 5.66
7744 30 6.08
9216 36 6.51

10816 42 6.91
12544 49 7.29
14400 57 7.70
16384 65 7.80
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FIG. 2. Energy of the parallelepiped.

6. CONCLUSIONS

In this paper we have shown that six-dimensional integrals defining the Coulomb self-
energy of a charge distribution and the mutual energy of two distributions can be reduced
to two-dimensional integrals by using integral geometric transformations. This technique is
particularly effective for convex polyhedral domains and polynomial distribution of charge,
since in this case some auxiliary computation can be done exactly. Preliminary tests on the
self-energy of the charged cube, for which reliable reference values are available through
an alternative method, show a ratio of precision versus computational effort comparable to
those of other methods in literature aimed at three-dimensional integrals.
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